

R&D Electronics Newsletter (2014 Issue 11)

Welcome to our 11th issue of newsletter! We hope all of you had great summer holidays!

As **the exclusive Sales-Channel of TECHSEM**, which is a well-known Chinese developer and manufacturer of **diode / thyristor modules and capsules** with more than 48 years experience, **R&D Electronics** always strives to offer the best quality and price to our customers.

In this issue we are very pleased to introduce the TECHSEM calculation and simulation tool for dissipation, temperatures and optimal choice of power electronic components. This tool is now online available: www.rd-ebusiness.com/en/service/technicalsupport. With the help of this tool, the performance differences of the available devices under application-oriented conditions, such as voltage level, switching frequency or cooling conditions, can be clearly demonstrated. This enables the developers to make the right decision for the choice of the power semiconductors. Please check it out!

All of our newsletters are archived in our online-shop. More information is available under: <u>www.rd-ebusiness.com</u>

Yours faithfully R&D Electronics Team

TECHSEM Simulation Tool:

As an additional service to aid customers with product selection and dissipation and temperature calculations, TECHSEM and R&D Electronics has introduced the extensive free software program to its <u>homepage</u> to enable customers to perform numerous simulations with power semiconductors under a wide range of operating conditions. This tool is suitable for the following purposes:

- Selecting power semiconductors when designing new converters;
- Specifying the necessary cooling measures;
- Calculating efficiency rates;
- Calculating maximum temperatures and thermal cycles for module life time calculations;
- Comparing products with different semiconductor technologies;
- Selecting the optimum price/performance/size ratio by comparing existing degrees of freedom in the system design (switching frequency, cooling measures, overload capability);
- Risk assessments as regards variation in both components and electric circuit parameters.

The program offers the user a "step by step" process to aid him in the semiconductor configuration and design process. The process steps involved are shown as following:

1. 1. Selection of a circuit topology

Circuit

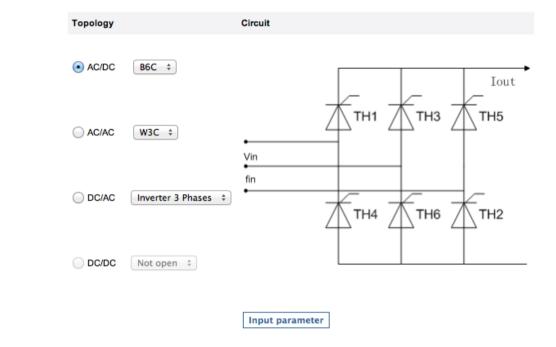


Fig 1: Selection of Circuit Topology

The user can choose between different topologies, such as rectifier, AC controller, Inverter and DC/DC converter, to find the circuit most suited to his requirements. Diagrams showing the circuit topology facilitate selection.

2. Input of circuit parameter

AC/DC Converter					
Circuit paramet	ter				
Input voltage	V _{in}	400	v		
Output current	I out av	120	Α	тн1 🛣 тн3 🛣 тн5 🛣 очт	
	I out rms	120	Α		
Form factor	FI	1.7321		TH4 TH6 TH2	
Input frequency	f in	50	Hz		
Overload paran	neter				
Overload factor		1			
Duration		10	s		
Back		Next			

Fig 2: Input of circuit parameter

In the next step, the electric parameters for the circuit, such as current, voltage, frequency and overload conditions can be entered.

3. Device selection

	AC/DC Converter	
1400	V	
and the start	and the set	en estas
Diode modules	 Thyristor modules 	Thyristor/Diode hybrid modules
No device \$	MTC135 \$	No device 💠
	Next	
	1400	Diode modules No device ‡ MTC135 ‡

Fig 3: Device Selection

In this step a suitable component can be selected supporting by case type, device type and voltage filter.

AC/DC-Cooling

4. 4. Specification of cooling conditions

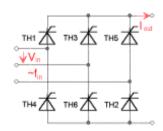

Ambient and heat sink	mbient and heat sink parameter						
Ambient temperature	Та	80	°C				
Cooling:							
Predefined type	Cooling method	Water cooling	g ‡				
	Heat sink model	No Heat sink	÷ +				
	Flow rate		m ³ /h (air) or l/min (liquid)				
	R _{th(s-a)}		к/W				
 Self defined heat sink 	Thermal conductivity	175.6	kCal/h⁺m*⁰C				
	Hight	0.03	m				
	Width	0.003	m				
	Length	0.3	m				
	Profile perimeter	2.25	m				
	Heat sink fin number	30	piece				
	Flow rate	6	m/s				
	R _{th(s-a)}	0.052	ĸw				
Oself defined Rth(s-a)	R _{th(s-a)}	0	кw				
Back		(Calculate				

Fig 4: Cooling Conditions and Temperatures

The cooling conditions and the ambient temperature can be specified according to the real application conditions.

5. Simulation results

Topology Circuit AC/DC B6C

Circuit:		Device:			
V _{in} I _{out} I _{out rms} f _{in} Form factor Overload factor Overload duration	400 V 120 A 120 A 50 Hz 1.7321 1 10sec	Device classification Device Recommended voltage Max. junction temparature $V_{TO} =$ $r_T =$ $R_{th[j-c]} =$ $R_{th(c-h)} =$	Thyristor modules MTC135 1400 125 °C 0.8V 2.85 mOhm 0.2 K/W 0.08 K/W		
Cooling:					
Ambient temperature Predefined Heat Sink Forced Air Cooling, Flow Rate: R _{th(s-a)}		Se	80 °C Self defined Self defined 0.052 K/W		
Losses and temperatures					
		Steady State	Overload		
Losses _{device}		45.7 W	45.7 W		
Losses _{tot}		50.2 W	50.2 W		
Junction temperature		96.7°C	96.7°C		
Evaluation:					
This configuration works fin	el				

Fig 5: Simulation Results

The losses and chip temperatures occurring under the specified conditions in the chosen component are then calculated. If changes have to be made, the user can easily return to the parameter field, make the desired changes and re-calculate on this basis.

In case of any questions about the simulation tool, please contact <u>info@rd-ebusiness.com</u>. We will be very happy to support you!

Free Samples

You want to test our products? No problem. We provide now for certain types of products with limited quantities as free samples at your disposal. For the available products, you only need to pay for shipping costs from Hong Kong to your delivery address. Do not hesitate to register as customer in our shop and contact us for free samples of your choice: www.rd-ebusiness.com.

If you want to unsubscribe our newsletter, please click here: